Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Protein-thiol oxidation and cell death: regulatory role of glutaredoxins.

Identifieur interne : 000830 ( Main/Exploration ); précédent : 000829; suivant : 000831

Protein-thiol oxidation and cell death: regulatory role of glutaredoxins.

Auteurs : Erin M G. Allen [États-Unis] ; John J. Mieyal

Source :

RBID : pubmed:22530666

Descripteurs français

English descriptors

Abstract

SIGNIFICANCE

Glutaredoxin (Grx) is the primary enzyme responsible for catalysis of deglutathionylation of protein-mixed disulfides with glutathione (GSH) (protein-SSG). This reversible post-translational modification alters the activity and function of many proteins important in regulation of critical cellular processes. Aberrant regulation of protein glutathionylation/deglutathionylation reactions due to changes in Grx activity can disrupt both apoptotic and survival signaling pathways.

RECENT ADVANCES

Grx is known to regulate the activity of many proteins through reversible glutathionylation, such as Ras, Fas, ASK1, NFκB, and procaspase-3, all of which play important roles in control of apoptosis. Reactive oxygen species and/or reactive nitrogen species mediate oxidative modifications of critical Cys residues on these apoptotic mediators, facilitating protein-SSG formation and thereby altering protein function and apoptotic signaling.

CRITICAL ISSUES

Much of what is known about the regulation of apoptotic mediators by Grx and reversible glutathionylation has been gleaned from in vitro studies of discrete apoptotic pathways. To relate these results to events in vivo it is important to examine changes in protein-SSG status in situ under natural cellular conditions, maintaining relevant GSH:GSSG ratios and using appropriate inducers of apoptosis.

FUTURE DIRECTIONS

Apoptosis is a highly complex, tightly regulated process involving many different checks and balances. The influence of Grx activity on the interconnectivity among these various pathways remains unknown. Knowledge of the effects of Grx is essential for developing novel therapeutic approaches for treating diseases involving dysregulated apoptosis, such as cancer, heart disease, diabetes, and neurodegenerative diseases, where alterations in redox homeostasis are hallmarks for pathogenesis.


DOI: 10.1089/ars.2012.4644
PubMed: 22530666
PubMed Central: PMC3474186


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Protein-thiol oxidation and cell death: regulatory role of glutaredoxins.</title>
<author>
<name sortKey="Allen, Erin M G" sort="Allen, Erin M G" uniqKey="Allen E" first="Erin M G" last="Allen">Erin M G. Allen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22530666</idno>
<idno type="pmid">22530666</idno>
<idno type="doi">10.1089/ars.2012.4644</idno>
<idno type="pmc">PMC3474186</idno>
<idno type="wicri:Area/Main/Corpus">000845</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000845</idno>
<idno type="wicri:Area/Main/Curation">000845</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000845</idno>
<idno type="wicri:Area/Main/Exploration">000845</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Protein-thiol oxidation and cell death: regulatory role of glutaredoxins.</title>
<author>
<name sortKey="Allen, Erin M G" sort="Allen, Erin M G" uniqKey="Allen E" first="Erin M G" last="Allen">Erin M G. Allen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
</author>
</analytic>
<series>
<title level="j">Antioxidants & redox signaling</title>
<idno type="eISSN">1557-7716</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Apoptosis (genetics)</term>
<term>Apoptosis (physiology)</term>
<term>Cell Death (genetics)</term>
<term>Cell Death (physiology)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Apoptose (génétique)</term>
<term>Apoptose (physiologie)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Mort cellulaire (génétique)</term>
<term>Mort cellulaire (physiologie)</term>
<term>Oxydoréduction (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Apoptosis</term>
<term>Cell Death</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Apoptose</term>
<term>Mort cellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Apoptose</term>
<term>Mort cellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Apoptosis</term>
<term>Cell Death</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Models, Biological</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Modèles biologiques</term>
<term>Oxydoréduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>SIGNIFICANCE</b>
</p>
<p>Glutaredoxin (Grx) is the primary enzyme responsible for catalysis of deglutathionylation of protein-mixed disulfides with glutathione (GSH) (protein-SSG). This reversible post-translational modification alters the activity and function of many proteins important in regulation of critical cellular processes. Aberrant regulation of protein glutathionylation/deglutathionylation reactions due to changes in Grx activity can disrupt both apoptotic and survival signaling pathways.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RECENT ADVANCES</b>
</p>
<p>Grx is known to regulate the activity of many proteins through reversible glutathionylation, such as Ras, Fas, ASK1, NFκB, and procaspase-3, all of which play important roles in control of apoptosis. Reactive oxygen species and/or reactive nitrogen species mediate oxidative modifications of critical Cys residues on these apoptotic mediators, facilitating protein-SSG formation and thereby altering protein function and apoptotic signaling.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CRITICAL ISSUES</b>
</p>
<p>Much of what is known about the regulation of apoptotic mediators by Grx and reversible glutathionylation has been gleaned from in vitro studies of discrete apoptotic pathways. To relate these results to events in vivo it is important to examine changes in protein-SSG status in situ under natural cellular conditions, maintaining relevant GSH:GSSG ratios and using appropriate inducers of apoptosis.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>FUTURE DIRECTIONS</b>
</p>
<p>Apoptosis is a highly complex, tightly regulated process involving many different checks and balances. The influence of Grx activity on the interconnectivity among these various pathways remains unknown. Knowledge of the effects of Grx is essential for developing novel therapeutic approaches for treating diseases involving dysregulated apoptosis, such as cancer, heart disease, diabetes, and neurodegenerative diseases, where alterations in redox homeostasis are hallmarks for pathogenesis.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22530666</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>03</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1557-7716</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>17</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2012</Year>
<Month>Dec</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Antioxidants & redox signaling</Title>
<ISOAbbreviation>Antioxid Redox Signal</ISOAbbreviation>
</Journal>
<ArticleTitle>Protein-thiol oxidation and cell death: regulatory role of glutaredoxins.</ArticleTitle>
<Pagination>
<MedlinePgn>1748-63</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1089/ars.2012.4644</ELocationID>
<Abstract>
<AbstractText Label="SIGNIFICANCE" NlmCategory="CONCLUSIONS">Glutaredoxin (Grx) is the primary enzyme responsible for catalysis of deglutathionylation of protein-mixed disulfides with glutathione (GSH) (protein-SSG). This reversible post-translational modification alters the activity and function of many proteins important in regulation of critical cellular processes. Aberrant regulation of protein glutathionylation/deglutathionylation reactions due to changes in Grx activity can disrupt both apoptotic and survival signaling pathways.</AbstractText>
<AbstractText Label="RECENT ADVANCES" NlmCategory="BACKGROUND">Grx is known to regulate the activity of many proteins through reversible glutathionylation, such as Ras, Fas, ASK1, NFκB, and procaspase-3, all of which play important roles in control of apoptosis. Reactive oxygen species and/or reactive nitrogen species mediate oxidative modifications of critical Cys residues on these apoptotic mediators, facilitating protein-SSG formation and thereby altering protein function and apoptotic signaling.</AbstractText>
<AbstractText Label="CRITICAL ISSUES" NlmCategory="RESULTS">Much of what is known about the regulation of apoptotic mediators by Grx and reversible glutathionylation has been gleaned from in vitro studies of discrete apoptotic pathways. To relate these results to events in vivo it is important to examine changes in protein-SSG status in situ under natural cellular conditions, maintaining relevant GSH:GSSG ratios and using appropriate inducers of apoptosis.</AbstractText>
<AbstractText Label="FUTURE DIRECTIONS" NlmCategory="CONCLUSIONS">Apoptosis is a highly complex, tightly regulated process involving many different checks and balances. The influence of Grx activity on the interconnectivity among these various pathways remains unknown. Knowledge of the effects of Grx is essential for developing novel therapeutic approaches for treating diseases involving dysregulated apoptosis, such as cancer, heart disease, diabetes, and neurodegenerative diseases, where alterations in redox homeostasis are hallmarks for pathogenesis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Allen</LastName>
<ForeName>Erin M G</ForeName>
<Initials>EM</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mieyal</LastName>
<ForeName>John J</ForeName>
<Initials>JJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P01 AG15885</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32-DK007319-32</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>06</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Antioxid Redox Signal</MedlineTA>
<NlmUniqueID>100888899</NlmUniqueID>
<ISSNLinking>1523-0864</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017209" MajorTopicYN="N">Apoptosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016923" MajorTopicYN="N">Cell Death</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22530666</ArticleId>
<ArticleId IdType="doi">10.1089/ars.2012.4644</ArticleId>
<ArticleId IdType="pmc">PMC3474186</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2011 Aug 5;286(31):27515-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21632542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 2009 Mar 31;674(1-2):73-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18952194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Oct 21;47(42):11144-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18816065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Funct Genomic Proteomic. 2009 Jan;8(1):60-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19279072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Nov 21;278(47):47245-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12968034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2011 May 20;408(4):609-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21531205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Jan 23;385(3):889-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18992757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Dec;76(23):7826-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 12;279(46):47939-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2010 Jan;35(1):43-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19811920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jan 28;286(4):2843-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21097842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 May 30;278(22):19603-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12649289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2007 Feb 2;100(2):213-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17185628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Oct 6;12(4):373-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13086-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16916935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 May 28;274(22):15857-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10336489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 26;279(48):50455-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15375156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Neurodegener. 2010 Nov 10;5:49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21067594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Nov 27;40(47):14134-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11714266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol (Mosk). 2011 Jan-Feb;45(1):173-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21485506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2009 Jan 26;184(2):241-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19171757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 2003 Jan;179(1):38-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12504866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Med Chem. 2003 Aug;10(16):1507-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12871123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2004 Aug 15;428(2):198-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15246877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Mar;10(3):445-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18092936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2006 Jan 1;40(1):173-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16337891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2011 Jul;6(7):934-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21633200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:143-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2000 Jul 21;274(1):177-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10903915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Age Ageing. 2010 Mar;39(2):156-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20051606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jul 10;284(28):18963-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19457862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Apoptosis. 2005 May;10(3):471-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15909109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 2011 Jan;45(1):3-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20815784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8168-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2007 Aug;7(4):381-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17662654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2004 Aug 1;381(Pt 3):675-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15139849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Nov 13;284(46):31532-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19755417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1976 Jul;73(7):2275-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):348-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15706083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Feb;21(2):429-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19218396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Aug;17(8):4792-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9234735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Jan 6;37(1):424-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9425064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Jan 1;16(1):17-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21707412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Nov;10(11):1941-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18774901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Mar 30;49(12):2715-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20141169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Apr;1783(4):641-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18331844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Feb;1780(2):160-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17996374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1492-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20805327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Mar 15;16(6):476-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21954972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):999-1010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2003 Jul 1;415(1):133-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12801522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2011 Apr 1;407(1):175-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21371429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bone. 2009 May;44(5):795-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19442627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Jul;10 Suppl:S18-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15298006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Nov 9;282(45):32640-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17848555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2004 Jun;61(11):1266-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15170506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Cancer Res. 2005 Nov 1;11(21):7607-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16278378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMJ. 2003 Jun 14;326(7402):1297-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Dec 8;37(49):17145-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9860827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2011 Sep 15;51(6):1249-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21762778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 2005 Sep;68(3):847-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15967877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Enzymol Relat Areas Mol Biol. 1990;63:69-172</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2407068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cancer. 2011 Mar;2(3):261-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21779497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2000 May 1;28(9):1349-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10924854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ageing Res Rev. 2010 Nov;9 Suppl 1:S36-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20732460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Apr;1783(4):589-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18047840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2008 May 31;25(3):332-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18483468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Dis. 2007 Apr;26(1):56-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17254792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 2011 Oct 17;24(10):1644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21815648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1974 Jan 15;38(3):263-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4853125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carcinogenesis. 2001 Aug;22(8):1221-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11470753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2001 Aug;8(8):759-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11514225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2003 Aug 1;373(Pt 3):845-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12723971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Aug 22;39(33):10319-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10956021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 Apr 15;42(14):4235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12680778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Apr;13(4):1109-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 Sep 15;43(6):883-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17697933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Sep 5;283(36):24801-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18611857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2002 Oct 15;367(Pt 2):541-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12149099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):1059-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Mar 15;16(6):567-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22053845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Jun;64(12):1518-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17415523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protein Pept Sci. 2010 Dec;11(8):659-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21235502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jun 10;286(23):20398-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21515673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Aug 25;275(34):26556-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10854441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2009 Feb;34(2):85-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19135374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Metab Rev. 2011 May;43(2):179-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21351850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2010 Sep;156(Pt 9):2608-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20522499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biochem. 2003 Jul 1;89(4):653-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12858332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2010 Jun 3;584(11):2242-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20406640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 Nov 8;44(44):14528-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16262253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Jun 15;12(12):1339-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19938943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 9;279(28):29857-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Future Neurol. 2008 May;3(3):309-323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18806889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2006 Dec 13;1125(1):176-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17109834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 1999 Sep;13(12):1481-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10463938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2009 Aug;66(15):2539-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19506802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(6):e2459</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18560520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Mar 15;16(6):543-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22066468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Jan 8;47(1):473-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18081316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Feb 2;282(5):2871-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17132626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2006 Oct;41(4):613-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16806262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2004 Jun 11;94(11):1483-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15117824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Feb 20;284(8):4760-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jan 29;285(5):3168-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19940158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2008 Jun 1;75(11):2234-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18395187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jun 22;282(25):18427-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):365-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20074091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Feb 2;282(5):3077-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Jan;9(1):25-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Aug;11(8):1819-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19361272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 29;277(48):46566-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12244106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 4;283(14):8868-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18216016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):919-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Nov;9(11):2027-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17845131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2008 Nov;9(11):826-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18931696</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Ohio</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
</noCountry>
<country name="États-Unis">
<region name="Ohio">
<name sortKey="Allen, Erin M G" sort="Allen, Erin M G" uniqKey="Allen E" first="Erin M G" last="Allen">Erin M G. Allen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000830 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000830 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22530666
   |texte=   Protein-thiol oxidation and cell death: regulatory role of glutaredoxins.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22530666" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020